Cognitive Science Colloquium - Summer Semester 2020
THURSDAYS 15:30 TO 17:00 - BUILDING 57, ROOM 508
Due to the COVID- 19, the schedule for the Summer Semester is cancelled
May 07 and 08, 2020
Topic: PIF2020 - Psycholinguistics in Flanders Conference
Abstract: For more details see: https://www.sowi.uni-kl.de/psycholinguistics/pif2020/
May 14, 2020
Speaker: Prof. Dr. Benjamin Hilbig (Landau University - Cognitive Psychology Lab, invited by Thomas Lachmann)
Topic:
Abstract:
May 28, 2020 - BLOCKED
Speaker:
Topic:
Abstract:
June 04, 2020
Note, this appointment will start at 3:30pm and will end at 17:30 pm!
Speaker: Master students from Cognitive Science
Topic: Mini-Conference Cognitive Science
Abstract: Talks and poster presentations from various labrotations
June 18, 2020
Speaker: Prof. Dr. Christof Körner (Graz University - Department of Psychology, invited by Thomas Lachmann)
Topic:
Abstract:
June 25, 2020
Speaker: Dr. Adrien Doerig (Psychophysics Lab, Brain Mind Institute, EPFL, Switzerland - invited by Tandra Ghose)
Topic: Crowding, Neural Networks and the Architecture of the Visual System
Abstract: Classically, vision is seen as a cascade of local, feedforward computations. This framework has been tremendously successful, inspiring a wide range of ground-breaking findings in neuroscience and computer vision. Recently, feedforward Convolutional Neural Networks (ffCNNs), inspired by this classic framework, have revolutionized computer vision and been adopted as tools in neuroscience. However, despite these successes, there is much more to vision. I will present our work using visual crowding and related psychophysical effects as probes into visual processes that go beyond the classic framework. In crowding, perception of a target deteriorates in clutter. We focus on global aspects of crowding, in which perception of a small target is strongly modulated by the global configuration of elements across the visual field. We show that models based on the classic framework, including ffCNNs, cannot explain these effects for principled reasons and identify recurrent grouping and segmentation as a key missing ingredient. Then, we show that capsule networks, a recent kind of deep learning architecture combining the power of ffCNNs with recurrent grouping and segmentation, naturally explain these effects. We provide psychophysical evidence that humans indeed use a similar recurrent grouping and segmentation strategy in global crowding effects. In crowding, visual elements interfere across space. To study how elements interfere over time, we use the Sequential Metacontrast psychophysical paradigm, in which perception of visual elements depends on elements presented hundreds of milliseconds later. We psychophysically characterize the temporal structure of this interference and propose a simple computational model. Our results support the idea that perception is a discrete process. Together, the results presented here provide stepping-stones towards a fuller understanding of the visual system by suggesting architectural changes needed for more human-like neural computations.
July 02, 2020
Speaker:
Topic:
Abstract:
July 09, 2020
Speaker: Dr. Friederike Blume (Tübingen University - Department of Psychology, invited by Thomas Lachmann)
Topic:
Abstract:
June 16, 2020
Speaker:
Topic:
Abstract: